Manifold Adaptive Kernel Local Fisher Discriminant Analysis for Face Recognition
نویسندگان
چکیده
To efficiently cope with the high dimensionalities and complex nonlinear variations of face images in face recognition task, a novel manifold adaptive kernel local Fisher discriminant analysis algorithm is proposed in this paper. The core idea of this algorithm is as follows: First, the local manifold structure of the face image is modeled by a nearest neighbor graph. Then, an original input kernel function is deformed with respect to the local manifold structure. Finally, the resulting manifold adaptive kernel function is incorporated into the kernel local Fisher discriminant analysis(LFDA) method, which leads to the manifold adaptive kernel LFDA(MAKL) algorithm for face recognition. Experimental results on three popular face databases show that the proposed algorithm performs much better than other related algorithms.
منابع مشابه
Face Recognition Based on Optimal Kernel Minimax Probability Machine
Face recognition has received extensive attention due to its potential applications in many fields. To effectively deal with this problem, a novel face recognition algorithm is proposed by using the optimal kernel minimax probability machine. The key idea of the algorithm is as follows: First, the discriminative facial features are extracted with local fisher discriminant analysis (LFDA). Then,...
متن کاملSemisupervised Kernel Marginal Fisher Analysis for Face Recognition
Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonl...
متن کاملAdaptive Quasiconformal Kernel Fisher Discriminant Analysis via Weighted Maximum Margin Criterion
Kernel Fisher discriminant analysis (KFD) is an effective method to extract nonlinear discriminant features of input data using the kernel trick. However, conventional KFD algorithms endure the kernel selection problem as well as the singular problem. In order to overcome these limitations, a novel nonlinear feature extraction method called adaptive quasiconformal kernel Fisher discriminant ana...
متن کاملKernel Local Fuzzy Clustering Margin Fisher Discriminant Method Faced on Fault Diagnosis
In order to better identify the fault of rotor system,one new method based on local fuzzy clustering margin fisher discriminant (LFCMFD) was proposed. For each point on manifold, the farthest point in local neighborhood and the nearest point outside local neighborhood usually constituted the local margin. LFCMFD introduced fuzzy cluster analysis algorithm, eliminated the influence of pseudo-mar...
متن کاملKernel-based Weighted Discriminant Analysis with QR Decomposition and Its Application to Face Recognition
Kernel discriminant analysis (KDA) is a widely used approach in feature extraction problems. However, for high-dimensional multi-class tasks, such as faces recognition, traditional KDA algorithms have a limitation that the Fisher criterion is non-optimal with respect to classification rate. Moreover, they suffer from the small sample size problem. This paper presents two variants of KDA called ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Multimedia
دوره 7 شماره
صفحات -
تاریخ انتشار 2012